2021 DOE Vehicle Technologies Office Annual Merit Review

Diesel-like fuels, combustion, and emissions

Stephen Busch Sandia National Laboratories Project ID # ft093

June 24, 2021

better fuels | better vehicles | sooner

Relevance of low-carbon fuels in medium/heavy-duty vehicles

- Displacing fossil-derived diesel fuel with low-carbon, bio-based alternatives reduces the GHG emissions of medium- and heavy-duty vehicles
 - Rapid deployment: utilize existing infrastructure for production, transport, and distribution
 - Unique impact: decrease carbon footprint of vehicles already on the road and in applications where battery-electric vehicles aren't viable
- Low-carbon bio-blendstocks can reduce GHG emissions by over 60% compared to fossil diesel and add value for refiners
- Introducing new fuels to the market is extremely challenging; requires comprehensive understanding of how fuels impact:
 - Life-cycle GHG emissions
 - Refinery optimization and economics
 - Infrastructure
 - Combustion in present and future engines
 - Aftertreatment systems and emissions regulations

2021 Vehicle Technologies Annual Merit Review

Outline

Co-Optima teams

Identification and evaluation of diesel-like bio-blendstocks

- Tiered screening approach
- Economic and environmental benefits
- Top bio-blendstock candidates
- Addressing barriers to adoption

Effects on combustion and emissions performance

- MCCI combustion including catalyst heating operation
- Ducted fuel injection
- Chemical kinetics
- ACI/multimode and exhaust aftertreatment
- Ongoing work, remaining challenges, and summary

2021 Vehicle Technologies Annual Merit Review

Collaborative Effort from all Co-Optima Teams

Tiered Screening Approach for Diesel Blendstocks

Tier 1: Identify attractive blendstocks using computational methods and measurements on small quantities

Tier 2: Determine if blends with fossil diesel can meet **ASTM** specifications

> Tier 3: Evaluation of candidate blends

Effects on engine performance, combustion, and emissions

Refinery blending analysis

TEA/LCA

Refinery and life-cycle analyses demonstrate bio-blends can add value for refineries and provide GHG reductions

Approach: identify fuel properties that would generate market pull from refiners; quantify economic and environmental benefits of bio-blends that meet fuel specifications

Multiple bio-blendstocks achieve 60%+ reductions in GHG compared to fossil diesel

- Approach: life cycle analyses of each bio-blendstock
- Result: many candidates have been identified that meet or exceed EPA requirements for renewable cellulosic biofuels
 - Life-cycle GHG emissions reduced by 60% or more compared to fossil diesel
- Significant reductions in GHG emissions are possible through multiple pathways

GHG emissions of these pathways are from either an earlier study or average of market fuels

² The negative GHG emissions from the "Isoalkanes from Volatile Fatty Acids" pathway is because of the credits of avoided emissions from landfill of the food waste feedstock.

Thirteen diesel-like blendstocks identified with potential to reduce GHG by 60%+ with reduced criteria emissions

 GHG emissions of blendstock reduced by 60%+ compared to fossil diesel

- CN > 40 (most > 48), LHV > 28 MJ/kg, acceptable flashpoint and cloud point
 - Additives required to meet some properties
- Potential to be economically produced at larger scales in most cases

 Potential to reduce criteria emissions relative to market diesel

Ethers

o o o o o o polyoxymethylene
4-butoxyheptane ethers (POMEs)

alkoxyalkanoates fatty

₩<u></u>

fatty alkyl ethers

POME-BB: a promising bio-blendstock with a commercially available surrogate

- NREL's innovative approaches have identified the endexchanged POME-BB mixture and a means to produce it from low net-carbon precursors
 - POME-BB removes two key barriers with POMEs while maintaining high cetane rating and low yield sooting index

	POME	POME-BB
Water solubility	0.6-258 g/L	< 2 g/L
LHV	19 MJ/kg	30 MJ/kg
DCN	>70	
YSI	<50	

- Scaled-up production processes are in development
- Dibutoxymethane (DBM) is commercially available and makes up a significant fraction of the POME-BB mixture
 - DBM has been selected for various engine experiments

Bio-blendstocks improve the soot-NOx tradeoff with MCCI operation

- Approach: quantify emissions and efficiency benefits of a eight different bio-blends for MCCI operation
 - 30% blending into fossil diesel

Results:

- Oxygenated bio-blends effectively reduce soot emissions, and can extend EGR tolerance over certification ULSD
- The POME bio-blend most effectively reduces soot and improves efficiency for a fixed injection timing and for a fixed NOx emissions level
- Oxygenated fuels combined with optimized calibrations may enable further efficiency improvements

Significant improvements in soot emissions and extended EGR tolerance for bio-blends

POME blend shows thermal efficiency improvements

Oxygenated bioblends promote clean, efficient combustion but catalyst heating operation may require calibration adjustments

30% 15%

5%

 Approach: single-cylinder engine experiments; statistical experiment design to study wide range of catalyst heating operation with 5-injection strategy

Results:

- For a given calibration, oxygenates typically:
 - · Burn faster than fossil diesel fuel
 - Produce fewer emissions than fossil diesel
- Engine calibrations may need to be adjusted to maintain catalyst heating performance with oxygenated, more reactive bio-blendstocks
- Multiple fuel properties influence catalyst heating operation; biofuels may necessitate different operating parameters for optimal performance

Co-Optima funding enabled the first engine and fuel-effects testing of ducted fuel injection (DFI).

DFI is synergistic with low-carbon, oxygenated fuels.

*Results for ~2.6 bar gross indicated mean effective pressure, 1200 rpm, steady state, 2-hole injector

 Additional emissions benefits from using low-carbon, oxygenated fuels with DFI provide a market incentive for their widespread use.

Surrogate fuel models match properties of diesel fuels and reduced kinetic mechanisms reliably predict ignition delays

Surrogate formulations

Approach: Utilize LLNL's automated surrogate optimizer to match:

- Cetane rating
- H/C ratio
- Distillation curve

Result: surrogate formulations with matched properties of a range of diesel fuels

Manually reduced surrogate mechanisms

Approach: Reaction flux analysis based mechanism reduction **Result:** 325 species mechanism to model oxidation, PAH formation, NOX formation and effect of NOX on ignition

<u>Detailed mechanism: 6500 species</u> Reduced mechanism: 325 species

Oxygenated fuels reduce NO_X and HC emissions with low-load ACI when conventional exhaust is too cold for urea-SCR

- Approach: develop ACI (late PCCI) operation for low loads when T_{FXH} ≤ 250°C to reduce NOx emissions
- Results
 - ACI reduces NOx and HCs but increases CO
 - Bio-blends with ACI reduce NOx and HC; can mitigate CO penalty
- Oxygenated bio-blendstocks combined with ACI may help achieve compliance with ultra-low NOx standards

National Laboratory

ORNL's Cummins ISB 6.7-liter-based mediumduty diesel engine converted to single cylinder operation with OEM piston and fuel injector.

Mode switching and oxygenates can mitigate low-load NOx without penalties in catalyst performance

 Approach: Single-cylinder engine experiments; dynamic catalyst light-off/lightdown characterization with MCCI vs. MCCI-ACI mode switching

Results:

- Exhaust temperatures can be maintained with a mode switching strategy
- Mode switching and oxygenate use results only in a CO penalty
- Mode-switching strategies may be a promising approach to reducing low-load NOx emissions during transients when exhaust temperatures drop below 250°C

FY21: ongoing engine combustion and emissions work

MCCI / cold start

 Mid-IR extinction technique for time-resolved detection of aldehydes in the exhaust runner: effects of oxygenate, cetane rating, and distillation properties during catalyst heating operation

DFI

 Effects of alkoxyalkanoate blend level and base diesel fuel type (i.e., from high-temperature liquefaction vs. petroleum) on DFI performance and emissions at idle and moderate-load conditions

ACI / multimode

- Cetane rating / fuel volatility impacts on multimode combustion including catalyst performance
- CFD-based co-optimization of fuel properties and multiple injection strategies to promote ACI with lower EGR requirements

Remaining challenges for engine combustion and emissions research

- Develop science-based guidance for fuel properties that:
 - Reduce fuel consumption and criteria pollutant emissions
 - Enhance cold start / catalyst heating operation
 - Promote ACI combustion
- Chemical kinetic models for bio-blendstocks to support simulation efforts
- Quantify impacts of GHG-neutral / GHG-negative fuels on combustion and emissions
 - Continued collaboration with fuel properties and ASSERT teams to identify attractive candidates
 - Effects on current and future medium- and heavy-duty combustion systems
- Continued development of DFI concept for clean, efficient, sustainable powertrains
 - Research consortium in development

Summary

- Co-Optima research has produced a detailed characterization of many bio-blendstocks and identified multiple attractive candidates:
 - At least 60% lower GHG emissions than fossil diesel
 - Most can be economically produced at scale and meet fuel property targets
 - Barriers to market entry can be mitigated in many cases
- Bio-blendstocks have beneficial effects on combustion and emissions
 - Cleaner and potentially more efficient in conventional diesel engines, with calibration adjustments
 - Synergistic with DFI for extremely low NOx and soot emissions in mixing-controlled combustion systems
 - Can promote low-load, low-NOx ACI operation with a penalty only in CO emissions
 - Multimode MCCI / ACI strategies may help achieve compliance with ultra-low NOx emissions regulations

 Co-Optima engine combustion researchers are well positioned to respond to the challenges of zero net-carbon fuels

2021 Vehicle Technologies Annual Merit Review

Acknowledgements

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Michael Berube

Acting Deputy Assistant Secretary for Transportation

Valerie Reed

Acting Director, Bioenergy Technologies Office (BETO)

Alicia Lindauer

Technology Manager, BETO Bioenergy Analysis & Sustainability

David Howell

Acting Director, Vehicle Technologies Office (VTO)

Gurpreet Singh

Program Manager, VTO Advanced Engine and Fuel Technologies

Kevin Stork and Michael Weismiller

Technology Managers, VTO Advanced Engine and Fuel Technologies

Thank you for your attention Questions?